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ABSTRACT: In this work, a two-dimensional model of polymer wet spinning that couples simultaneous momentum and energy trans-

port with ternary diffusion and phase separation processes is presented and its predictions for a model system are discussed. The

uniqueness of the model lies in its two-phase nature and ability to predict important characteristics of the wet spinning process, such

as the locking-in of axial velocity, mass transfer behavior, and internal structure formation along the spinline. The model predicts

growth of the two-phase gel that forms and the porous fractions within it, along with the compositions of the polymer-rich and

solvent-nonsolvent-rich phases. The appearance of a skin-core structure that depends on the system and operating conditions is also

predicted. These features are demonstrated through analyses of the isothermal wet spinning of poly(acrylonitrile) solutions in dimeth-

lysulfoxide using two different nonsolvent coagulants, water and ethanol. VC 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015, 132, 41772.
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INTRODUCTION

Wet spinning is a widely applied industrial process used in fiber

manufacturing. In this process, a polymer solution is extruded

through a perforated plate into a coagulation bath having a

nonsolvent mixture, and the precipitated polymer threads are

bundled at the end of the spinline by a rotating wheel.

A great deal of experimental work has been done to elicit fruit-

ful information on the phase equilibrium thermodynamics of

many of the ternary systems used in the wet-spinning process.

In addition, wet-spun fibers have extensively been characterized

to relate their mechanical and structural properties to the pro-

cess conditions, such as temperature, bath composition, stretch

ratio,1,2 and the type of the nonsolvent.3 However, except for a

limited number of measurements, such as velocity and force,

on-line analyses of these systems have been limited, due in part

to the microscopic length-scales characteristic of the radial

dimensions, and the difficulty of making in situ measurements

in the bath environment. In consequence, modeling studies4 can

be a useful adjunct to gain insights on the key variables control-

ling the process.

Ziabicki (1976) has reviewed the earlier studies on wet-spinning

process in detail.5 More recently, Oh et al. (1996) investigated

the HNO3 composition within poly(acrylonitrile) (PAN) fibers

as a function of bath length, and reported satisfactory agree-

ment of their experimental data with the model results.4 They

found the coefficients of an empirical expression to relate the

diffusion coefficient to the solvent concentration. Chen et al.

(2006) modeled the wet spinning of PAN in dimethlysulfoxide

(DMSO)–water solution as an unsteady-state diffusion process

in one direction.6 Kalabin and Pakshver (1997) employed a

two-dimensional (2D) theoretical model to predict the gel layer

thickness along the spinline.7 They introduced two distinct dif-

fusive regions to account for the effect of gelation on the diffu-

sion rate.

A detailed literature survey indicates that previous studies have

focused on pseudo two-component and single-phase modeling

of the wet spinning. Since most of the important properties of

wet spun fibers can be related to their two-phase structure, we

consider it very important to incorporate the ternary phase sep-

aration dynamics in the modeling.

The purpose of this article is to demonstrate a 2D theoretical

model of the wet-spinning process that incorporates the ternary

thermodynamics, along with an associated parameter for the

two-phase fiber structure that develops along the spinline. Our

model is capable of predicting the relative proportions of the

polymer-rich and solvent-nonsolvent-rich phases, as well as the

compositions within both, as functions of the radial and the

axial positions. Results will be shown to compare favorably with

experimental observations. The wet-spinning system chosen for

modeling is PAN in DMSO and two different nonsolvents,

water, and ethanol.
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METHODOLOGY AND MODEL CONSTRUCTION

System Definition and Summary of the Assumptions

Figure 1 illustrates the wet-spinning system modeled in this

study. As seen, immediately on emerging from the spinneret,

polymer solution contacts with a nonsolvent solution in the

bath and separates into a polymer-rich phase and a polymer-

poor phase while being drawn in the axial direction. The main

assumptions of our model are as follows:

1. The system is 2D and at steady state.

2. Fiber cross section is circular.

3. The system is isothermal.

4. Fiber is drawn with a uniaxial extension.

5. Mixtures within the fiber and the bath are both ideal.

6. Polymer diffusion into the bath is neglected.

7. The off-diagonal terms in the ternary diffusion equations

are neglected.

8. Radial solvent and nonsolvent diffusion rates are expressed

by Fickian equations, for each of the two phases. Axial

mass transfer is assumed to be dominated by bulk convec-

tion, while the radial mass transfer has both diffusive and

convective contributions.

9. Two-phase compositions achieve instant equilibrium every-

where within the fiber.

10. Nonsolvent volume fraction on the binodal curve for the

polymer rich phase is constant. This assumption is sup-

ported by the parallelism of binodal with the polymer–sol-

vent axis for most of the ternary systems.

11. Polymer volume fraction in the polymer poor phase is zero

at all points.

12. At the point of maximum die-swell, the fiber has a uni-

form composition across the radius.

Flow Kinematics

Uniaxial extensional flow kinematics are assumed and the con-

tribution of diffusive mass transfer in all the components of the

velocity gradient tensor is neglected.8
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In eq. (1), vz and vr are velocity components in the axial and

radial directions, respectively. The radial velocity component

can be expressed in terms of the axial velocity gradient:
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Transport Equations

Continuity Equation. Integration of the equation of continuity

for the polymer, assuming no polymer transport to the bath

solution, gives the following equation for the fiber radius, R:
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In eq. (3), W1, q1o and �/1 are the mass flow rate of the poly-

mer, pure polymer density and the radially averaged volume

fraction of the polymer, respectively. The differential form of

this equation can be expressed as follows (see Appendix A.1 for

derivation):
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In eq. (4), the kyi are mass transfer coefficients for the solvent

and nonsolvent transfer to or from the bath, and the qi are the

associated bath-side interfacial (subscript film) and bulk bath

(subscript bath) compositions.

Momentum Equation. Neglecting the inertial force due to sol-

vent and nonsolvent transport, the radially averaged momentum

equation for a steady state and uniaxial extensional flow

becomes the following:8
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In eq. (5), �q is the cross-sectional averaged density, �szz and �srr

are the cross-sectional averaged normal components of the

stress tensor in the axial and radial directions, respectively, s is

the surface tension of the filament, and g is the gravitational

constant. The shear stress due to surface friction, sa
rzjR , is

expressed as:

sa
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1
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where f and qfilm are the friction coefficient and density of the

film layer, respectively.

Mass Transfer Equation. A 2D mass transfer model is adopted.

The continuity equations for solvent and nonsolvent are the fol-

lowing (see Appendix for derivation):
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and

Figure 1. Schematic description of the wet spinning system. The symbols

are defined in the text.
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where qi values are the mass concentrations of the solvent

(i 5 2) and the nonsolvent (i 5 3). Ki 5 12q1o/qio, and ji
denotes the radial diffusive flux of species i.

Constitutive Equations

Given the relatively low take-up speeds characteristic of wet

spinning (i.e., low Deborah number), Newtonian behavior can

be assumed. Thus, the stress-deformation rate behavior will be

given by:
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In the solution region (e 5 0) within the fiber, viscosity is

assumed to be described by:

g5 gPR T ;w1;w2ð Þ (10)

In the gel region, on the other hand, the viscosity is assumed to

be a linear combination of the two-phase compositions:

g T ; e;w1; w2; n2ð Þ5 e gPP T ; n2ð Þ1 12eð Þ gPR T ;w1; w2ð Þ
(11)

In these equations, e is the wet porosity which represents the

fraction of the polymer-free phase at a point within the gel

region. Subscripts PP and PR denote the polymer-free and

polymer-rich phases, respectively, and ni and wi are the compo-

sitions of species i in the polymer-free and polymer-rich phases,

respectively. A protocol to determine e, ni, and wi is prescribed

as follows: Given ui, the single phase representation for the

composition, the compositions in the two phases, ni and wi are

calculated by solving the following equations for each

component:
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( )
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Activities, ai, of solvent and nonsolvent are calculated using the

following expressions from Flory–Huggins theory:9
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where h2 5 /2/(/2 1 /3) and h3 5 /3/(/2 1 /3). Concentration-

dependent interaction parameters (gij) are given in the

literature.3 �V i is the molar volume of pure component i. The

diffusive mass flux of species i within the fiber is expressed in

terms of the volume-weighted average of the fluxes from the

polymer-rich and polymer-free phases, respectively:

ji5eji;PP1 12eð Þji;PR (17)
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@r
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In these equations, wi and Di are the mass fraction and the dif-

fusion coefficient of species i, respectively.

Boundary Conditions

The following conditions hold at the point of maximum die

swell and at the take-up wheel:

/ijz505/id (19)

vz jz505vzo (20)

vz jz5L5vL (21)

At the fiber center:
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At the fiber surface, a convective mass transfer boundary condi-

tion holds if the concentration difference between the bath and

the film side is significant. When the film composition is close

to the bath composition, we adopt a constant surface composi-

tion boundary condition. Thus:

If j/2,film – /2,bathj> 0.05

jijr5R5 kyðqi;film2qi;bathÞ (23)

otherwise,

@/i

@z

����
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50 (24)

Finally, composition of the polymer-free phase at the surface is

assumed to be identical to that of the film solution:

nijr5R5 /i;film (25)

Material Properties

The glass transition temperature of the polymer mixture, Tg is

calculated using the following relation:10

Tg 5
Tg11 KTg232Tg1

� �
/23

11 K21ð Þ/23

(26)

where /235/2 1 /3 and Tg23 5 (/2 Tg2 1 /3 Tg3)/(/2 1 /3).

For the system in this study, it is assumed that K 5 2.5.

The zero-shear viscosity of the polymeric mixture is calculated

by the use of the following set of equations:11,12
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We used En 5 44,000 j/mol and M1cr 5 1.3 kg/mol for PAN.

Zero-shear viscosity for a polymer-free mixture is calculated by

the use of a commonly known viscosity blending number,

VBN:13

VBNi514:534 ln ln mi10:8ð Þð Þ110:975 (34)

VBNmix5w2VBN21w3VBN3 (35)

mmix5exp exp
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In these expressions, m is kinematic viscosity in centistokes. Pure

substance viscosities of solvent and nonsolvent are calculated

from an Arrhenius-type expression:

l5Al exp
Ea;l

RT

� �
(37)

where Al and Ea,l are viscosity coefficient and activation energy

for viscosity, respectively (see Table I). The binary diffusion

constant Di,PP in the polymer-free solution is estimated using

the volume-weighted logarithmic average of the self diffusivities

of the corresponding pure substances:

logDi;PP5/2logDself
22 1/3logDself

33 (38)

Self-diffusivities were estimated by the following Arrhenius

expression:

Dself
ii 5Adiff exp 2

Ea;diff

RT

� �
(39)

where Adiff and Ea,diff are the multiplication constant and the

activation energy for diffusivity, respectively (see Table I).

For the binary solutions in the bath and film, thermal conduc-

tivity, k was calculated using a mixing rule:
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Pure substance conductivities of solvent and nonsolvent are cal-

culated using the equation below:

ki;i52;35
1:11=M

1=2
i

� 

3120 12Trð Þ2=3
� 


3120 12Tbrð Þ2=3
(42)

where Tr 5 T/Tcr and Tbr 5 Tb/Tcr. For the ternary solution

within the fiber, thermal conductivity is calculated similarly by

applying the mixing rule twice. Mixture heat capacity is esti-

mated using mass fraction weighting:

CP5w1CP11w2CP21w3CP3 (43)

CP1 and CP3 values are listed in Table I, for PAN and water. For

DMSO, the following expression is used:14
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In this equation, x2 is the accentric factor of DMSO (see

Table I) and the ideal gas heat capacity for DMSO is expressed

as below:

CP2o56:9415:6 31022 T22:2731025 T 2 (45)

Heat and Mass Transfer Coefficients and Friction Coefficient

The Nusselt number, Nu and the heat transfer coefficient, h are

obtained using a correlation for pure parallel flow:17

Nu5
hD

kfilm

50:420 Re
1=3
D (46)

In eq. (46), D is the fiber diameter and the Reynolds number,

ReD is calculated as follows:

ReD5
vzqfilmD

lfilm

(47)

Table I. Physical Properties of Components in the Modeled System

Properties PAN DMSO Water Ethanol

qio (kg/m3) 1200 1100 998 789

Tg (K) 36015 153 182 106

k [W/(m.K)] 0.216 See text See text See text

CP [j/(kg.K)] 1260 See text 4187 4187

Mi (kg/mol) 78.0 0.07813 0.018015 0.04607

Tcr (K) – 720.0 647.3 514

Tb (K) – 462 373.2 351.5

x – 0.2094 0.344 0.635

Ea,m (j/mol) – 14,260 16,137 13,909

Am (Pa.s) – 6.288 3 1026 1.357 3 1026 3.802 3 1026

Ea,diff (j/mol) – 14,900 17,550 17,550

Adiff (m2/s) – 2.998 3 1027 2.761 3 1026 1.727 3 1026
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Having obtained the Nusselt number, the Sherwood number is

calculated using the Chilton–Colburn analogy:

Sh Scð Þ21=3
5Nu Prð Þ21=3

(48)

where the Schmidt and Prandtl numbers are Sc 5 l/(qDi) and

Pr 5 (lCP)/k, respectively. Mass transfer coefficient, ky is calcu-

lated using the definition of the Sherwood number:

Sh5
ky D

Di

(49)

The friction coefficient is calculated according to the equation

below:18

f 50:68 Re20:80
D (50)

Coordinate Transformation and Nondimensionalization

The moving boundary in the radial dimension is fixed via nor-

malization of the radial coordinate by the fiber radius, R(z):
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where R*(z) 5 R(z)/Ro. The other nondimensional variables are

defined as below:
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Differentials take the following forms:
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Numerical Method

The differential equations were discretized in both the axial and

radial directions. Twenty nodes with smaller spacing near the

surface were used in the radial direction. Discretized equations

were solved simultaneously along the axial coordinate using a

fourth-order Runge–Kutta method in combination with a

shooting method. At the point of maximum die-swell (z 5 0),

the initial conditions were assigned as introduced in the previ-

ous section. The calculation procedure is as follows:

First, an initial guess for (dvz*/dz*)|z 5 0 is assigned to forward

the step in the z-direction with a step-size of Dz 5 1025. At

each value of z, the nondimensionalized continuity, momentum

and mass transfer equations are used in the given order to

update the values of the axial derivatives. A fourth-order

Runge–Kutta algorithm is also employed to refine approximate

values of the axial derivatives. The calculated velocity at the

spinline exit is compared with the predefined value of take-up

speed vL and a new guess for (dvz*/dz*)|z 5 0 is assigned accord-

ingly to reinitiate an updated set of iterations. This procedure is

repeated until the take-up speed is estimated with an acceptable

error value.

RESULTS AND DISCUSSION

Flow Characteristics

To illustrate model predictions for the flow characteristics of

wet spinning, axial velocity profiles are presented for different

bath compositions in Figure 2. As seen, axial velocity increases

along the spinline and asymptotically approaches the take-up

velocity. Han and Segal (1970) reported a similar trend in their

experimental and modeling results.19 These results indicate a

so-called locking-in behavior similar to that predicted and seen

in other spinning processes.8,20 On the contrary, the model of

Kalabin and Pakshver exhibited a parabolic-like increase in the

axial velocity.7

Our predictions suggest that the axial velocity profile is strongly

affected by the bath composition. As the solvent fraction in the

bath decreases, the velocity is seen to approach the take-up

speed sooner. The apparent extensional viscosity profiles shown

in Figure 3 exhibit orders of magnitude increases along the

spinline and show a similar locking-in behavior, suggesting that

the flow kinematics are affected by the bath composition pri-

marily through the effect on the viscosity. In our model,

Table II. Conditions of the Modeled Wet Spinning Process

Process parameters Values

Mass flow rate at die exit, Wd (kg/s) 3.52 3 1027

Volume fraction of DMSO in the dope, /2d 0.77

Volume fraction of nonsolvent
in the dope, /3d

0.01

System temperature, T (K) 313

Die swell ratio, dsr 1.67

Dope diameter, Dd (m) 1.5 3 1024

Take-up velocity, vL (m/s) 0.02

Length of spinline, Lo (m) 0.1

Volume fraction of DMSO in the bath, /2bath 0.70

Volume fraction of nonsolvent
in the bath, /3bath

0.30

Figure 2. Effect of bath composition on the axial velocity profile along

the spinline. The other operating conditions are listed in Table II. [Color

figure can be viewed in the online issue, which is available at wileyonline-

library.com.]
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viscosity is directly related to the phase separation [see eq.

(11)]. Particularly, the viscosity depends dominantly on the

composition within the polymer-rich phase. In their study, Han

and Segal (1970) expressed their measured extensional viscosity

as a second-order polynomial function of solvent fraction and

argued that the coagulation due to mass and heat transfer

mainly influenced the elongational viscosity.19 The predictions

in our case are a consequence of a combination of more rapid

phase separation and higher polymer fractions within the

polymer-rich phase with increased nonsolvent in the bath.

Tensile forces at take-up for different bath compositions shown

in Figure 4, indicate that higher force is predicted for lower sol-

vent fraction in the bath solution. The reason for this can be

attributed to both more rapid mass transfer, inducing earlier

solidification, and an eventually higher polymer fraction within

the polymer-rich phase. This result is in agreement with the

predicted viscosity curves for different bath compositions (see

Figure 3). Han and Segal (1970) argued that spinning under

high tensile force (or stress) is a significant factor which may

improve the mechanical properties of the finished threads by

increasing molecular orientation during the processing.19

The effect of draw ratio on the tensile force at take-up is illus-

trated in Figure 5. The curves exhibit a concave-downward

increase with draw ratio, similar to experimental results found

by Han and Segal.19,21

Mass Transfer Dynamics and Fiber Quality

Model predictions of radial solvent composition profiles for the

PAN–DMSO–water system are shown in Figure 6. In the first

half of the spinline (z*< 0.5), solvent fraction is predicted to

decrease in both the radial and axial directions, reflecting the

effect of the radial outward flux of solvent in this region of the

spinline. However, as shown, the solvent composition remains

essentially constant along the second half of the spinline

(0.5< z*< 1.0), despite the presence of a radial concentration

gradient. This is further illustrated in Figure 7. Figure 7(a) on

the left shows solvent composition profiles just below the spin-

neret (z* 5 0.02). At this point, the fiber cross-section consists

of two regions: a single phase solution (0< r*< 0.7) separated

by a two-phase gel region (0.7< r*< 1.0) which grows inward

away from the point of fiber-bath contact. The associated ter-

nary composition path shown on the phase diagram (right)

illustrates that compositions in the polymer-rich (wi) and

solvent-nonsolvent rich (ni) regions of the gel lie along the

respective ends of the equilibrium tie lines. As further precipita-

tion (i.e., gelation) occurs along the spin line, these composi-

tions move deeper into the binodal region. Figure 7(b)

illustrates the profiles at the end of the spinline. By this point,

the gel has grown across the entire radius (see also Figure 6)

and the profiles for the overall (/2) and two-phase (wi, ni)

Figure 3. Effect of bath composition on the viscosity profile along the

spinline. The other operating conditions are listed in Table II. [Color fig-

ure can be viewed in the online issue, which is available at wileyonlineli-

brary.com.]

Figure 4. Effect of bath composition on tensile force calculated at the

take-up. The other operating conditions are listed in Table II.

Figure 5. Effect of draw ratio on the tensile force at the take-up. The

other operating conditions are listed in Table II.
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compositions exhibit the locking-in feature described earlier. It

is important to note that though the equilibrium phase compo-

sitions remain constant across the entire radius and are fixed at

the two ends of a tie line, the single phase composition (/2)

still exhibits a locked-in radial profile as a consequence of the

nonuniform wet-porosity profiles (See, e.g., Figure 8). However,

since all radial compositions lie along the same equilibrium tie

line [Figure 7(b)], the diffusive fluxes are zero. To our knowl-

edge, these results are unique to this study, and may be attrib-

uted to the separate calculation of the diffusive fluxes through

the two-phase structure.

Predictions of the effects of bath composition and dope compo-

sition on the radial distribution of fiber porosity, suggest forma-

tion of a denser (less porous) skin layer surrounding a core

with higher porosity (see Figures 8 and 9). This is in good

agreement with the experimental results on the morphology of

PAN fibers reported earlier.2,3,6 Zhang et al. (2011) examined

wet-spun PAN fibers by SEM imaging and confirmed for the

PAN–DMSO–water system that the radial fiber structure con-

sists of a dense, thin-skin layer having no visible pores in com-

bination with an intermediate dense layer having a small

number of pores and a wide core domain with a loose struc-

ture.3 Chen et al. (2006) reported dense skin thicknesses on the

order of 20% of the pore radius for PAN fibers.6 Such morpho-

logical features are also consistent with the appearance of

skinned, porous structures typical of quenched phase inversion

membranes.22 Skin-core structure formation is an important

feature of wet spinning whose control is needed to enhance

fiber mechanical properties. In consequence, we have further

investigated the effects of wet-spinning conditions on predic-

tions of the structure formation.

Results for porosity profiles at different bath compositions are

presented in Figure 8. These demonstrate that porosity becomes

more uniform across the fiber radius, and decreases in the inner

Figure 6. Prediction of solvent composition profiles at various axial posi-

tions along the spinline. The operating conditions are listed in Table II.

[Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]

Figure 7. Solvent radial profiles (left) and associated ternary composition paths (right) for two axial locations [(a) z* 5 0.02, (b) z* 5 1] along the spin-

line. Dashed lines on phase diagrams denote equilibrium tie lines (see text for discussion). [Color figure can be viewed in the online issue, which is avail-

able at wileyonlinelibrary.com.]
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core, as solvent concentration in the bath is increased. Zhang

et al. (2011) argued that rapid solidification at the fiber surface

due to the precipitating strength of the bath leads to the forma-

tion of a skin layer that also slows the subsequent diffusion of

solvent from the fiber.3 On the other hand, our results show

that solvent diffusion is completed during the spin process,

leading to more uniform, radial compositions in both phases

prior to take-up. Hence, our predictions of increasing porosity

with a decrease in solvent composition in the bath suggest the

controlling feature of phase equilibrium. In addition, the

polymer-rich phase shrinks more when solvent extraction is

favored by lowering the solvent composition in the bath (see

Table III). These results suggest that selection and control of

bath composition are of particular importance in obtaining

spun fiber quality.

Predicted radial porosity profiles for different polymer dope

compositions are illustrated in Figure 9. With increasing poly-

mer fraction in the dope, porosity profile levels in the interior

of the fiber are seen to decrease. Also, once phase equilibrium is

attained throughout the fiber and the mass transfer is com-

pleted, compositions in the polymer-free phase become nearly

identical to those in the bath. This is confirmed by our model

predictions of polymer-free phase composition profiles and is

consistent with observations described in Ziabicki.5 Similarly,

polymer fractions within the dense phase also equilibrate prior

to the take-up for the runs at constant bath conditions. Thus,

changes in the dope composition affect the relative proportions

of the two phases rather than exerting an influence on the even-

tual compositions within the separate phases. These observa-

tions explain the observed proportionality between the dope

composition and the fraction of the polymer-rich phase

obtained at the end of the process.

Although the porosity profile depends strongly on both the

bath composition and the polymer fraction in the dope, skin-

layer thickness is not affected significantly. In all cases studied

for the PAN–DMSO–water system, skin thickness is found to be

on the order of one-tenth of the fiber radius.

Effect of Nonsolvent Type on the Model Predictions

Predictions have also been made for a wet-spinning system

composed of PAN–DMSO–ethanol. Axial composition profiles

Figure 8. Radial wet porosity profiles within the exiting fiber (z* 5 1) for

various bath compositions. The other operating conditions are listed in

Table II. [Color figure can be viewed in the online issue, which is available

at wileyonlinelibrary.com.]

Figure 9. Radial wet porosity profiles in the exiting fiber (z* 5 1) for vari-

ous polymer compositions in the dope solution. The other operating con-

ditions are listed in Table II. [Color figure can be viewed in the online

issue, which is available at wileyonlinelibrary.com.]

Table III. Effect of Bath Composition on the Final Polymer Fraction

inside the Polymer-Rich Phase.

/2bath 0.70 0.75 0.80

w1f 0.84 0.75 0.65

Figure 10. Effect of nonsolvent type on the axial solvent composition pro-

file. The operating conditions are listed in Table II. [Color figure can be

viewed in the online issue, which is available at wileyonlinelibrary.com.]
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of DMSO are illustrated in Figure 10 for the two different non-

solvents—water and ethanol. Both curves exhibit an asymptotic

decrease in solvent concentration along the spinline, typical of

behaviors seen experimentally.4 However, as shown in Figure 10,

the decrease in solvent composition is more rapid for the case

of nonsolvent water. We believe this reflects the higher precipi-

tating power of water in combination with the larger miscibility

gap between the dope composition and the binodal curve for

the PAN–DMSO–ethanol system.3

In order to compare the influence of the nonsolvents on the

wet-spinning performances, results for fiber porosity profiles

obtained for the PAN–DMSO–ethanol system are shown in Fig-

ure 11. The profiles for different bath compositions exhibit a

common layered structure with a very dense thin skin sur-

rounding a wide and loose portion, similar to those predicted

for the PAN–DMSO–water system. However, skin thicknesses in

this case are on the order of 20% of the total radius, which is

about twice that suggested for the PAN–DMSO–water system.

In addition, as seen in Figure 11, porosity in the core decreases

with increasing solvent concentration in the bath. On the other

hand, in the example of fibers generated in a 40% ethanol bath

reported by Zhang et al., the morphology exhibited a uniformly

dense structure across the radius.3

CONCLUSIONS

A 2D, two-phase model has been constructed to investigate the

mass transfer and structure formation dynamics during the wet-

spinning process. The commonly observed skin-formation phe-

nomenon is successfully predicted for PAN fibers. The nonsol-

vent type and composition of the coagulation bath have

significant effects on the porosity profiles and associated com-

position profiles. In addition, the velocity profiles exhibit a

locking-in behavior, typical of the behavior seen experimentally.

Although PAN–DMSO–water and PAN–DMSO–ethanol systems

are studied in this work, the presented model is also adaptable

to other wet-spinning systems.

APPENDIX
Equation for the Rate of Change of Fiber Radius Along the

Spinline

Balance for species i gives:

2
d

dz
R2vz/i qio

� �
52Rkyi qi;film2qi;bath

� �
(A1.1)

2R2 d

dz
vz/i

� �
22Rvz/i

dR

dz
5

2Rkyi

qio

qi;film2qi;bath

� �
(A1.2)

2R vz

d/i

dz
1/i

dvz

dz
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22vz/i

dR

dz
5

2kyi

qio

qi;film2qi; bath

� �
(A1.3)

Summing up this equation for all three species gives:

dR

dz
52

R

2vz

dvz

dz
2

ky2

vzq2o

q2;film2q2;bath

� �
2

ky3

vzq3o

q3;film2q3;bath

� �
(A1.4)

Mass Transport Equations

Assuming the mixture is ideal,

q5q1o1K2q21K3q3 (A2.1)

where K2 5 1 2 q1o/q2o and K3 5 1 2 q1o/q3o.

The continuity equation gives:

1

r

@
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50 (A2.2)

Inserting eq. (A2.1), we find:
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The point-wise mass transfer equation for the solvent is:
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And for the nonsolvent, similarly:
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Combination of eqs. (A2.1, A2.3, A2.5, and A2.6) gives:
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Further combination of eq. (A2.7) with the eqs. (A2.5 and

A2.6), respectively, gives:
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� 	
 �
(A2.8)

and

Figure 11. Wet porosity profiles in the exiting fiber (z* 5 1) for different

bath compositions (nonsolvent is ethanol). The other operating conditions

are listed in Table II. [Color figure can be viewed in the online issue,

which is available at wileyonlinelibrary.com.]
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